Analysis of securing territories with states of the state geodesic network

Volume ІI(42), 2021, pp.35-43


1 Lviv Polytechnic National University, 12, S. Bandery str., Lviv, 79013, Ukraine
2 Ivano-Frankivsk National Technical University of Oil and Gas, 15, Karpatska str., Ivano-Frankivsk, 76019, Ukraine, e-mail:


The purpose of the work is to investigate the possibilities of using geospatial analysis to assess the state of geodetic support of territories for mapping of different scales, on the example of Ivano-Frankivsk region. Method. Methods of geospatial analysis, in particular zoning of the territory by means of buffer polygons, and also application of a hexagonal grid are used for researches. Results. An algorithm for estimating the state of geodetic support of territories using the method of buffer zones and the method of hexagonal polygons is presented. A comparison of methods is performed and graphical schemes of both methods are presented. The analysis of the results allowed to establish that the state of geodetic support of the territories of the studied areas varies widely. For mapping on a scale of 1:10000 and 1:25000, geodetic support varies between 65–92 %, depending on the area. Bogorodchany district has the highest indicators, Horodenkivsky district has the lowest. The percentage of territories is reduced for larger scales of 1:5000 and 1:2000. Mapping on such a scale requires additional network thickening. The method of hexagonal polygons on average showed better results by 6.4 % than the method of buffer zones. The maximum difference between the calculated collateral obtained from the two methods is 9.7 %; the minimum is 2.4%. Scientific novelty and practical significance. The analysis of the provision of SGN points using geospatial analysis, on the example of Ivano-Frankivsk region, showed the feasibility of its use for these purposes. A comparative analysis of geospatial analysis methods to assess the state of geodetic support based on graphical materials and quantitative characteristics showed that the best results can be obtained using the method of hexagonal polygons. Using the method of buffer zones gives less reliable results. The proposed and researched approach can be used to study the provision of points of the State Geodetic Network for the whole territory of Ukraine, as well as for the territories of individual OTGs, districts and regions.


geodetic support; GIS; State Geodetic Network; hexagonal polygons.


  1. Holovlov E. Yu., Furmanov K. V., Kazmirchuk R. V. (2009). Do pytannia vyboru ratsionalnoho skladu systemy topoheodezychnoho i navihatsiinoho zabezpechennia viisk (syl) pry vprovadzhenni heoinformatsiinoi systemy u Zbroinykh Sylakh Ukrainy. Systemy ozbroiennia i viiskova tekhnika. Viiskovo-tekhnichni problemy. Kyiv, No. 4 (20), 37–40.
  2. Zubkov V. P. Topoheodezychne zabezpechennia yak skladova informatsiinoho zabezpechennia Syl oborony Ukrainy. 10.33099/2304-2745/2020-0/116-121.
  3. Instruktsiia z topohrafichnoho znimannia u masshtabakh 1:5000, 1:2000, 1:1000, 1:500. Kyiv: HUHK i K, 1999.
  4. Nesterenko S. V., Rukas T. V., Leiko O. V. (2018). Naiavnist i fizychnyi stan punktiv DHM v Poltavskii oblasti ta inshykh oblastiakh Ukrainy. Molodyi vchenyi, No. 11 (63).
  5. Popovych N. V. (2019). Kartohrafichne zabezpechennia rehionalnykh stratehii rozvytku terytorii (na prykladi Kharkivskoi oblasti): avtoref. dys. … kand. heohr. nauk: 11.00.12. Kyiv, 22 s.
  6. Poriadok obstezhennia ta onovlennia punktiv derzhavnoi heodezychnoi merezhi Ukrainy. Holovne upravlinnia heodezii, kartohrafii ta kadastru Ukrainy. Ministerstvo ahrarnoi polityky ta prodovolstva Ukrainy. Nakaz No. 435 vid 03.11.2014. URL:
  7. Romanko R., Sokolova D. (2018). Zastosuvannia heksahonalnykh polihoniv dlia otsinky heodezychnoho zabezpechennia terytorii Pervomaiskoho raionu. Mizhnarodna naukova konferentsiia molodykh vchenykh “Geoterrace-2018”, Lviv, 144–147.
  8. Trevoho I., Ilkiv Ye., Haliarnyk M. (2019). Analiz suchasnoho stanu DHM Ukrainy. Suchasni dosiahnennia heodezychnoi nauky ta vyrobnytstva. Lviv: Vydavnytstvo Lvivskoi politekhniky, No. 2(38), 54–60.
  9. Trevoho I. S., Ilkiv Ye. Yu., Haliarnyk M. V. (2017). Monitorynh heodezychnykh punktiv: monohrafiia. Ivano-Frankivsk: IFNTUNH, 214 s.
  10. Trevoho I. S., Ilkiv Ye. Yu., Haliarnyk M. V. (2012). Pro neobkhidnist vyznachennia vysotnoho elementa mistseznakhodzhennia heodezychnykh punktiv. Visnyk heodezii ta kartohrafii, No. 3(78), 4–6.
  11. Birch Colin P. D., Oom Sander P., and Beecham Jonathan A. (2007). Rectangular and hexagonal grids used for observation, experiment, and simulation in ecology. Ecological Modelling, Vol. 206, No. 3–4, 347–359.
  12. Faille F. and Petrou M. (2010). Invariant image reconstruction from irregular samplesand hexagonal grid splines. Image and Vision Computing, 28(8): 1173–1183.
  13. Harwin S., Lucieer A. (2011). Assessing the Accuracy of Georeferenced Point Clouds Produced via Multi-View Stereopsis from Unmanned Aerial Vehicle (UAV) Imagery. Remote Sensing, vol. 4, 2012, 1573–1599.
  14. Sahr K. (2011). Hexagonal discrete global grid systems for geospatial computing, Archives of Photogrammetry, Cartography and Remote Sensing, Vol. 22, 363–376.
  15. Vaaja М., Hyyppä J., Kukko A., Kaartinen H., Hyyppä H., Alho, P. Mapping topography changes and elevation accuracies using a mobile laser scanner. Remote Sensing, Vol. 3, 587–600.

Full text  pdf  Download